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Abstract. A two-dimensional system of classicaldipoleson a triangular lattice with isotropic 
in-plane ordering is studied both in spin-wave approximation and by Monte-Carlo simula- 
tion. It is shown that the mean-square displacement ( E ? ) ,  unlike in the two-dimensional XY 
model, is finite in this system in the thermodynamic limit-not divergent logarithmically. 
This boundedness of (E9 is caused, as demonstrated, by the long-range nature of the 
potential. 

1. Introduction 

A number of physical systems, such as layered magnetics with dominant dipole-dipole 
interaction [I, 21, admolecules with permanent dipole moment on a solid substrate [3]  
and biological membranes [4], are described by models of classical dipoles. When the 
external field is absent, and ignoring exchange or any other interactions, the simplest 
Hamiltonian may be written as 

H = (112) SpSfD"p(r, - r j )  (1) 
+ j  m.# 

where 
D"B(r) = S"f'/r3 - 3r"rP/r5 

is a dipole tensor, J measures the strength of the dipole-dipole interaction, and S; is a 
classical spin vector of unit length located at the site r,. 

The problem of phase transitions in a system with uniaxial ordering of spins with 
dipolar interaction has previously been described for an Ising-like system on a cubic 
lattice [5 ] ,  for ferromagnets of finite thickness [6] and for Langmuir-Blodgett films [7]. 
The method of obtaining critical exponents from the E expansion is discussed in [8]. 

In this paper, we shall consider the case of isotropic in-plane ordering of classical 
spins with dipolar interaction when spins u e  confined to a two-dimensional (ZD) lattice. 

The interesting questions arising with this model are: the structure of the ground 
state, the existence of long-range order and, if it exists, phase transition. 

At present the following results for ZD dipole system appear in the literature: 

(i) The ground state in a system with periodic boundary conditions is angular- 
degenerate, ferromagnetic or antiferromagnetic depending on the rhombicity angle of 
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the lattice 19, lo]. The ferromagnetic state, for example, with energy EIN = -2.758 .I/ 
a), where a is the lattice spacing, is lowest for a triangular lattice. 

(ii) The ground state in a finite system with open boundaries is the macro-vortex 
configuration with a higher energy than in the case of a periodic system [9]. 

(iii) At high temperatures the systemundergoes aphase transition, which is predicted 
in computer experiments with periodic boundary conditions for square I l l ]  and honey- 
comb [2] lattices. 

(iv) The spherical model for the Hamiltonian (1) gives the critical temperature 
tendingtozeroin the thermodynamiclimit fortriangular andsquare lattices, i.e. absence 
of long-range order [U]. 

(v) Dipole forces in 2D ferromagnets stabilize the ferromagnetism, according to 
quantum spin-wave theory 1131. 

(vi) A phase transition is impossible in a system of classical dipoles in both ZD and 3~ 
cases [14]. 

These results reveal a contradictorysituation,concerningthe existence of long-range 
order and phase transition in a ZD dipole system. This contradiction arises because 
different models were considered in the studies mentioned above. In the spherical model 
[12], for instance, the condition Sf = 1 is replaced by the weaker one 

N 

E S : = N  
i = l  

and this results in the components S: and S; of a vector Si becoming unbound (they are 
bound only through (2)). Hence, longitudinal fluctuations and those transverse to kgive 
independent contributions. If one of them diverges at large N, then the total integral of 
flucruations diverges as well. But in the ZD dipole system with the restriction 5': = 1 (as 
will be shown below), transverse and longitudinal componentsof fluctuationscannot be 
separated. 

In [14] ZD and 3~ classical dipole systems were studied, where the interaction was 
described by the tensor k"kD/k'. However, this cannot be considered as a Fourier 
transform of the dipole tensor (la) in leading orders in k because the dipole tensor at 
small k is given by [13, U ]  

&f,(k) = u,LV~ + b ,  knk6/k + O ( k z )  

D f { ( k )  = azScD + bz k'ko/kz + O ( k 2 )  

for XJ and 3D cases respectively, where the first terms cannot be neglected. 
We conclude that points (iv) and (vi) are not relevant, stnctly speaking, to our 2D 

dipole system and there is no restriction, from the literature, against the existence of 
long-range order and phase transition in a ZD dipole system. 

Computer experiments [2,11] were carried out for precisely the same model as 
described here, but for finite systems without size-effect analysis. In this paper we 
present spin-wave and Monte-Carlo studies of the low-temperature behaviour of a ZD 
system of classical dipoleson a triangular lattice. The mean-square angular displacement 
and correlation functions are calculated for different system sizes. We shall discuss also 
asystem with isotropic l/r'potentiaI on an arbitrary ZD lattice. 
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2. Spin-wave approximation 

Since the ground state of the 2D dipole system on a triangular lattice is an angular- 
degenerate ferromagnetic state, we suppose the low-temperature state to be nearly 
ferromagnetic with small angular displacement in every lattice site. Consider the finite 
system with periodic boundary conditions. Let N = 2N,Ny be the number of dipoles, 
and L, = Ns and L,. = 1V~(3)~/*a, where a is the lattice spacing, be the sides of the 
periodic cell, which is chosen as a rectangle, consistent with the triangular lattice. Let 
eo be the angle of the vector of spontaneous magnetization, Oi be angular displacement 
in the site i. Changing variables Sp to 6, and expanding the Hamiltonian into a 0, series 
up to square terms, we obtain 

H =  NE^ + (.1/2) E eiA(ri - ripi  (3) 
i.j 

where 

c0 = ( J / Z )  D"(r) = (J/2) DW(r) 

is the energy of the ground state, where rdenotes the lattice sites. 
I 

It will be noted that the dipole tensor for a periodic system is given by 

(4) 

where p is a translational vector with the components nL, and mL,, where It ,  m = 
0, & 1, k2,.  . . . Function A(r) resulting from expansion has the form 

A(0) = -28,/J + (sin2 8,)DU(0) + (cos2 O , ) D ~ ( O )  
A(r) = (sin2 e,)D=(r) - sin(20,)DsY(r) + (cos2 e,)DYY(r) 

where 

(6)  
r f O  

Introducing the Green function 

where A(k)  is the Fourier transform of A(r),  allowing -9, to take values from --3o to +m, 

and performing the necessaty integration, one derives the following expressions for the 
mean-square angular displacement and correlation function, respectively, 

(e2) = ( ~ , T / N J ) G ( o )  (8) 
c(r) = (S(O)S(r)) = exp{(kB T/NJ)[G(r) - G(O)]}. (9) 

(10) 

For the Fourier transform of A(& taking account of expression (6), we obtain 

A(k)  = -2so/J + (sin2 Bo)D"(k) + (cos2 O,)DYY(k) - sin(28,)DxY(k) 

where @(k) is the Fourier transform of the dipole tensor. It is clear from (10) that only 
excitations transverse to the magnetization vector give contributions to (e2). 
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Tensor D"p(k) has been calculated in different ways [12, 13, 15, 161. It can be 
expressed in terms of Ewald sums 

where U is the elementary cell area (U = ( 6 / 2 ) a Z  for a triangular lattice), r (b ,  L) is an 
incomplete gamma function, M is an arbitrary parameter, the value of which is chosen 
to ensure that both series converge rapidly, and q is a vector of the reciprocal lattice. 
Expanding (11) into a Taylor series near k = 0 we obtain the small-k behaviour of the 
dipole tensor 

D"@(k) = 6a@(2~o/J + DlkZ) + Dz kakplk - D3k"kp (12) 

where D, = 0.2633 0- ' ,  D2 = k / u  = 7.255 C2, D3 = 1.5800 a-' and = 

It is clear from (12) that the small-k behaviours of eigenvalues corresponding to 
-2.7585 J d .  

directions longitudinal and transverse to k are respectively 

D,(k) = 2 ~ o / J  + DZk + (Dl - D3)k2 

D,(k) = 2 ~ o / J  f Dlk2. 

Note also that these eigenvalues always appear in (10) as a linear combination and 
hence, unlike the spherical model [12], it is impossible to decompose longitudinal and 
transverse spin fluctuations into separate parts in sum (7). 

Comparing (12) and (IO) one can see that the function in sum (7) has a singularity at 
k - 0. Substituting (12) into (10) and changing the variables to polar coordinates k and 
q we obtain for small k 

A(k, q) = D l k 2  + (D2k - D3kZ)sin2(& - q). (13) 
This expression shows that A(k, q) = k2 only when q = Bo, and A(k, q) depends 
linearly on k for other directions. For comparison, there is a stronger singularity 
A(k, q) Q k2 for the ?D XYmodel[17,18], which leads after integrating in k-space to 
logarithmic divergence of displacements with system size 

(e*)  Tln(N). (14) 

However, the ?D dipole system exhibits another behaviour. Indeed, replacing the sum 
in (7) by an integral (this replacement is justified for sufficiently large systems) over the 
circular Brillouin zone of equal area we find 

where os = 45.58 is the area ofthe Brillouin zone, K = 3.809 and ko = min(2x/ 
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Lx, 2n/L,). If we consider periodic cells of nearly square shape, then L, = Ly = 
0.9306 N1I2 Q and k, = 6.752 N - @  Q - I .  The mean-square displacement is then given by 

(16) 
which gives a finite value of (eZ) in the large-N limit: (O’L = 0.4597 T*, where T* = 
kBTa3/J is the reduced temperature. Owing to this feature, the 2D dipole system essen- 
tially differs from other well known 2~ systems such as the LD XY model and 2D crystals 
with isotropic pair potentials for which relations like (14) are valid 117, 181. 

We must not overlook the fact that certain assumptions have been made. It is clear 
that the assumptions concerning integration in k-space are not critical. This effect 
vanishes with N - t  a, Our first assumption, on the existence of definite direction and 
small angular displacements, is more essential and may give rise to some doubts. 
Therefore, a Monte-Carlo computer experiment wascarried out to verify the spin-wave 
results. 

(e2) = 0.2341 T*[0.3928 + arcsin(1 - 2.451 W’fl)] 

3. Monte Carlo simulation 

The same system described above (i.e. ZD dipoles on a triangular lattice with periodic 
boundary conditions) was simulated by a Monte Carlo computer experiment. The 
periodic cell was chosen as nearly square in shape. The dipole tensor (5) for periodic 
systems of different sizes was calculated by the Ewald method before Monte Carlo (MC) 
runs. The usual Metropolis algorithm [19] was employed, with automatic choice of 
displacement amplitude ensuring an acceptance probability of about 0.5. 

First, the ground state was tested. The arbitrary disordered initial configuration was 
rapidly cooled to T = 0. In most cases, the system came to be in a ferromagnetic 
state of the same energy E$N = -2.7585 J /a3  but with different directions of the 
magnetization vector. In some cases it came to be in metastable states of higher energy 
than Eo, but after heating and subsequent cooling it again reached the lowest-energy 
ferromagnetic state. 

At low but finite temperatures the state was nearly ferromagnetic. The vector of 
spontaneous magnetization fluctuated both in amplitude about a mean value and in 
direction from configuration to configuration. These angular fluctuations were unre- 
stricted. A noticeable rotation of the magnetization vector for small systems was 
observed, while its amplitude was nearly constant. The vector made, for example, an 
average rotation of approximately 180” during 4000 steps for N = 30. 

When calculating (e’) the direction of the magnetization vector was determined for 
every configuration, and then the deviations from this angle were calculated along the 
system. About 1000 Mcsteps were takenforequilibration and up to20000configurations 
were taken for averaging. 

4. Results and discussion 

The results of the calculations are presented in figure 1 for (e2) at reduced temperature 
T* = 0.1. The exact result of spin-wave theory wasevaluated as follows. First, the dipole 
tensor @(k) was calculated for N = 8064, and (0’) was found as a sum over all the 
points in the Brillouin zone. Including only certain points from the Brillouin zone, the 
results for different Nmay be obtained. Thus, the exact spin-wave results are presented 
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Figure 1.Themean-squareangular displacement verrussys1emsire:circlesareMonteCarlo 
values, crosses are exact spin-wave results, full curve carrespands to formula (16) and the 
broken line corresponds lo 1arge.N limit. The reduced lemperarure is 7 = 0.1. 

in figure 1 for the sequence N = 8064,2016,1344, . . . , where every Ncorresponds to a 
nearlysquarecell. Note that, owingto anisotropyof the potential, (0') dependson both 
system shape and angle Bo. Therefore, besides the choice of square shape we had to 
average (0') over Bo. This averaging made it possible to compare Monte Carlo and spin- 
wave results, because of automatic averaging over Bo in the former case owing to 
Buctuationsof OO.Asonecanseefromfigure1 theresultsofspin-wave theoryandMonte- 
Carlo simulation are in reasonable agreement. Correlation functions are presented in 
figure 2 for different temperatures and N = 418. At reduced temperatures below T* = 
0.6, Monte Carlo and spin-wave results again coincide. The agreement of the Monte 
Carlo simulation with spin-wave theory predictions is evidence of the validity of our 
starting assumptions and, hence, of our conclusions on the existence of long-range order 
in the 2D dipole system. 

Toclarify theroleoflong-range interactionsofthe dipole potential anditsanisotropy, 
consider the system with long-range isotropic potential l / r 3  with Hamiltonian given by 

where for a periodic system D(r) is given by 

When J >  0 the ground state of this system is a ferromagnetic state, and we may 
apply a similar spin-wave consideration as has been applied for the ?D dipole system. 
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Figure 2. The pair correlation function: circles are Monte Carlo values, full curves are spin- 
wave predictions. The size of the system is N = 418. 

Expanding (17) in powers of 0,. we shall obtain the Hamiltonian in the form (3) with the 
ground-state energy given by 

and the function A(r) given by 

A(0) = D(r) 

A(r) = - D(r) r#O. 

,#O 

The Fourier transform of A(r) now becomes 

cos(kr) 
A(k) = - 2 i , / J  - -. 

.#O rJ 
Function 1/A(k) hasasingularityatk = 0. Notingthatthe l/rJpotentialcan beexpressed 
in terms of the dipole tensor 

- l/rJ = D”(r) + DYY(r) 

A(k) = -4~o /J  + D’(k) + D”(k). 

A(k) = D2k + (20,  - D3)k2. 

(22) 

(23) 

(24) 

we can write the expression 

Knowing the small-k behaviour of Dwo(k) we now derive 

We again have a term linear in k, and hence the value of (0’) is bounded. Indeed, 
integratingon k for A’+ m (ko+ 0) one finds (e’), = 0.105 P. 
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Consider now the effect of lattice type. The expression (21) may be written in the 
form 

1 - cos(kr) 
= 2 

,*U r3  

from which it is clear that, at small k, the terms with small rcan be neglected. The terms 
with large rgive the main contribution; but for larger, the lattice sum gives the same 
result for different lattices. This result may be evaluated by replacing the sum (25) with 
the integral. Performing the integrations and expanding Bessel functions in powers of 
k, one finds 

A(k) = (2z /v )[k  - (a/4)kz]  

where the first term exactly coincides with that of (24). Thus, our conclusion about the 
boundedness of (0') for the 2~ dipole system on a triangular lattice is also valid for an 
isotropic ferromagnetic interaction l/r3 on the arbitrary 2D lattice. 
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